
6 Kubernetes Best 
Practices to Empower 
Developers to 
Troubleshoot 
Independently

komodor.com



komodor.com 2

6 Kubernetes Best Practices to 
Empower Developers to Troubleshoot 
Independently



komodor.com 3

Hacks of Kindness: How to Shift Your 
Kubernetes Troubleshooting Left in 
Practice

When Kubernetes was initially conceived, it was built 
for stateless applications, although it has made a lot 
of progress with supporting stateful applications. 
That’s why it remains a 

. This allows you to remove 
a lot of the risk around your applications, 
and also gain the benefits of elasticity.


When you are required to restart your application, it is not 
dependent upon any external information or data to run 
the same way as before the restart, making your 
application a lot easier to manage.


Therefore, applications that rely on external state for 
initialization and startup will have a lot more difficulty 
adapting to Kubernetes operations, as this requires 
significantly more engineering expertise to enable similar 
capabilities (elegantly restarting after a crash, for 
example). In many instances, this cannot be done at all.

good practice to build your 
applications to be stateless from the start when 
deploying them to Kubernetes

1. Stateless-First Design



komodor.com 4

On the flip side, 

. For example, when 
K8s detects a problem, it will just restart your application 
and container forever if something goes wrong, and 
enable you to resume operations as usual, seamlessly. 
This type of approach is much more prone to breakage 
with stateful applications.

stateless applications can scale 
up or down through simple definitions in the code. It also 
helps with troubleshooting

Much has been said about managing environments on 
Kubernetes - a quick search will bring up plenty of great 
resources. But for the TL;DR, a commonly recommended 
practice is to 

.


With Kubernetes, 
, 

which segregates environments by ‘names' that point to 
specific objects in isolation, while still sharing the same 
underlying resources and infrastructure. 

create an environment for each stage of 
development: development, QA, staging, production

it is also possible to separate 
environments logically using the namespaces resource

2. How to Segregate Environments

This also maintains these different environments on the 
same shared resources, such as nodes, meaning that if 
one of the environments is using too many system 
resources - such as CPU or memory, your production 
environment will have less to work with.


One way to work around this is with 

. This makes it possible to choose which 
node or specific environment lives on which machine, 
based on the amount of resources it usually consumes. 

node taints and 
tolerations, which enables you, according to your 
configuration, to let the K8s scheduler decide which node 
it should live in



komodor.com 5

For someone just getting started with Kubernetes, 
separating the cluster entirely is likely a better practice. 
While it is more expensive, it will deliver greater safety 
overall, in addition to being easier to launch and 
manage.

You can either create an environment for each development stage (A)  
or separate using the namespaces resource (B)

A

B

3. Proper YAML Management (AKA Your K8s 
Deployment Manifest)

When working with YAML files, including helpful metadata 
can significantly simplify troubleshooting in the long run.

Some good practices include 

 that point to the proper objects and volumes, 
configuring liveness and readiness probes. In this way, 
K8s will know when your app is healthy and ready to 
accept traffic, or otherwise alert you when there is an 
issue.

setting the right labels and 
annotations, environment variables, secrets, and config 
maps



komodor.com 6

YAML file containing labels and readiness probe

Do “future you” a favor and take some proactive actions 
to simplify troubleshooting processes by 

. Some good practices 
include:

making sure to 
tag and label your logs properly

4. Kubernetes-Aware Logging



komodor.com 7

Also note that 

. This can help with troubleshooting and 
understanding where an issue originated from. 

there are many K8s-specific tags that 
define the application’s production or runtime 
environment

Prometheus with Grafana have become very popular 
ways to monitor applications on Kubernetes due to being 
open source projects as well. 

.

While open source projects 
provide a lot of flexibility and are built for customizability, 
they do come with a high learning curve

5. Invest in Proper Monitoring



komodor.com 8

Tooling aside, the three main things you’ll want to start 
with monitoring on K8s are:

The first two bullets provide critical information about 
your cluster, the third point and likely the most important 
one - APMs, provide you business critical information 
about your application


Due to Kubernetes' innate scalability, if you go from a 
couple to 10s to hundreds of servers, running hundreds to 
thousands of applications, finding the root cause of an 
issue is going to make you pull some haris. 


to help you to detect, alert, and 
understand the business logic of your applications.

At a certain scale, the manual approach simply stops 
working and that’s when you’ll need the help of these 
monitoring tools 

When it comes to applications running on K8s there are 
certainly core concepts that developers should be aware 
of, and this is where your DevOps teams can help. 

. Knowing about the 
platform that the application lives on is critical to help 
developers respond to incidents more quickly. 

DevOps teams can and should empower development 
teams to learn about the platforms and environments on 
which they deploy their applications

6. Knowledge Sharing & Transparency



komodor.com 9

Understanding the nuances of containers and pod 
configurations, health checks, cluster orchestration, load 
balancing and more helps developers troubleshoot 
issues rapidly and effectively without escalating to the 
DevOps team when something goes wrong. 


Takeaway: the more you empower and entrust to your 
developers, the more efficiently your Kubernetes systems 
will run end to end.



komodor.com 10

Bringing it all Together



komodor.com

What is Komodor

Komodor takes the complexity out of K8s troubleshooting, 
providing all of the tools you need to troubleshoot with 
confidence. For each service, Komodor displays a coherent 
view, including relevant deployments, config changes, and 
alerts.

Free your devs-on-call to focus on their daily strategic work!

Learn more

 Full activity timeline with data insights that are most 
relevant for solving issue

 A complete drill-down to your K8s dif
 Easily understand cross-service changes

Turning troubleshooting 
chaos into clarity

https://komodor.com/

